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Set Cover Problem

 Input: Collection F of sets Sy, ..., S,,;, each a subset
of U = {1, ...,n}

e Output: a subset C of F such that:
OC covers U
O |C| is minimized

e Complexity:
O NP-hard
0 Greedy (In n)-approximation algorithm




Set Cover Problem

 Input: Collection F of sets 54, ..., S,,,, each a subset
of U =1{1,..,n}

e Qutput: a subset C of F such that:
O C covers U
O |C| is minimized

e Complexity:
O NP-hard

0 Can’t do better unless P=NP
[LY91][RS97][Fei98][AMS06][DS14]
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Streaming Set Cover

e Model [SG09]
O Elements are store in the main memory
O Sequential access to 54, S5, ..., Sy
1. One (or few) passes
2. Sublinear (i.e., o(mn)) storage
3. (Hopefully) decent approximation factor
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Streaming Set Cover

e Model [SG09]
O Elements are store in the main memory
O Sequential access to 54, S5, ..., Sy
1. One (or few) passes
2. Sublinear (i.e., o(mn)) storage
3. (Hopefully) decent approximation factor

ﬁ
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QOO

e Why? Memory: sublinear in (mn)
O A classic optimization problem
O Application in “Big Data”: Clustering, Topic Coverage
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Fractional Set Cover

* Each set can be picked fractionally (assigning value
x; € [0,1] to each set S;)

Fractional Solution ' po .
of Set Cover R:Ziﬁr;:;d [ (Iogtg n)-é: F;P:O)t(_lmate ]
ntegral Solution
(xlixzi'“;xm) 8

Pick S; w.p. &« x;logn

* The first step in solving covering LPs in stream
O Packing LP (Fractional Maximum Matching)[AG11]



Previous and Our Results

: O(logn) 1 0 (mn)
I h
Greedy Algorithm 0(log n) n O(n)
[SG09] 0(logn) 0(logn) 0(n)
( on®/s ~
[ER14, CW16] ( 5/ ) 1/6 —1 0(n)
< Q(n°/6%)
0 <1 [DIMV14, HIMV16, BEM17] 0(p/d) 0(1/9) 0 (mn?)
\ [AKL16, A17] 1/6 polylog  Q(mn?)
0(1/8) 0(mn?)
p = approximation factor for offline Set Cover n = number of elements

- m = number of sets
O(f(m, n)) = 0(f(m,n) e “log® mlog® n)



This Talk

4 )

Theorem: there exists a (1 + €) approximation algorithm for the fractional
set cover problem in the streaming setting, with d passes, that uses

~ .
O(mno(de) + n) space.

———
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The Plan

The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

e Implement MWU Oracle Naively in the streaming
> 0(k logn ) passes

Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

e Reducing the number of passes to a constant




MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for
a weighted average constraint.

e Take the solution

e The less a constraint is satisfied, the less weight it
gets for the next iteration

e Repeat the above for T iterations

* Report the average solution found over all
iterations.

e T=0(¢plogn /e?)

CoveringLP(A,xm, cm> bn)

Min ¢l x
Ax > Db
x =0

M(Anxm» Cm» bn» pt)

Min cT x

(wt)TAx > (wH)Th
x>0

wl e« (1,4,1) = uniform weights
Fort=1,t < T do > T iterations

x! « solution of Oracle = avg constraint w.r.t. wt

witl « Update(w?t, x?)

& decrease weight of constraints oversatisfied by x!
X = avg(xy, - xr)

MWU Update Rule:

Wet-l-1 = Wet (1 - E/‘l)(Aext - be))

Vi,t:—¢p < Agx* —b, < ¢

Vi: A, x = b, — ¢
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The Plan

The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

Implement MWU Oracle Naively in the streaming
> 0(k 1Ogn) passes

€2

Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

Reducing the number of passes to a constant
O Running several rounds of MWU together by sampling in advance



Multiplicative Weight Update (Set Cover)
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Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(F, U, k)

Assign weight w, to each
Yeer Xs < k element e (initially one)

Solve the weighted average
constraint approximately!
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Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(F, U, k)

Lser Xs < k

Zee‘u We ZeES Xs = Zeeu We
Xg = 0 VS eF

Zee‘u We ZeES Xs = Zee‘u We
YseF Xs eesWe = Xeey We

Assign weight w, to each
element e (initially one)

Solve the weighted average
constraint approximately!

ZSE:F XsWg = Zee’u We Define wg = Y oesWe

By normalizing weight vector w (prob. vector p):

Yser Xsbs = 1



Multiplicative Weight Update (Set Cover)

Oracle(F, U, k, p)
Assign weight w, to each

Yeer Xs < k element e (initially one)

Solve the weighted average

Diser XsPs = 1 constraint approximately!
Xg >0 VS eF




Multiplicative Weight Update (Set Cover)

Oracle(F, U, k, p)
Assign weight w, to each

< element e (initially one)
Solve the weighted average
LserXsps = 1—¢ constraint approx. w.r.t pt (< wt): xt
Xg >0 VS eF
—p < Vepes xs— 1< P Ve €U Update the prob vector

Width of ptt =pt(1-0(e) x (Tx§ — 1))

oracle

¢ lo

MWU Theorem. After T = O( 2g n) rounds,

Bounding the max number of times i B
an element gets covered X =g x*) is an e-feasible solution.

ZS:eesxszl_S Ve eU

Finally, we can then pick k(1 + €) sets to cover
all the elements!
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The Oracle

Given: a probability vector p on the elements, and k

Goal: pick (fractionally) k sets by assigning values to x¢ such that

1. The total probability (weight) of the sets in the solution is maximized,
i.e., at least (1 — ¢€), where

= probability of a set is the sum of the probability of its elements, i.e.,
Ps = Zees Pe

2. The width (total number of times any element is covered) is small.

Oracle(¥, U, k,p) Initial plan:
e solve the Oracle in one pass
Yser Xs Sk and low space,
e gives an algorithm for set
Lser XsPs 21— ¢ cover with T passes and
xs 2 0 VSEF low space.
—) < Ysees Xs— 1< ¢ VeeU




The Plan

 The Multiplicative Weight Update framework
MWU for the Set Cover
The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming



Implementing MWU in Stream (1)

If S is the heaviest set,

Naive solution for the oracle: ~ IIEEEEEED> x5 = {k .
0 oOtherwise.

Width (the number of times an element is covered)
is trivially k

The number of required rounds to obtain (1 + €)-
klogn)

Performance

(1 + &)-approximation
o(kloe "/ 2) passes
0(n) space

approximation is O(

g2

Streaming: find the heaviest set w.r.t p in a single
pass over the stream

Challenge:

Oracle(F, U, k, p) Is it possible to find a solution to the
oracle with smaller width?

Lser Xs S k No, simply all sets may contain a
designated element e and hence
DserXsps =1 —¢ the width of any solution to the

xs =0 VS € F oracle is always k no matter how

—p < Yopes Xs— 1< VeeU the solution is picked.
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The Plan

 The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

 Implement MWU Oracle Naively in the streaming

e Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System



Extended Set System

Challenge: Different Set System?

Is it possible to find a solution to the

oracle in set system (U,F) with Extended Set System of F:

smaller width? The set system (U, F) (extension
No, simply all sets may contain a of F) is the collection containing

designa‘l'ed element e and hence all subsets of sets in F.
the width of any solution to the
oracle is always k no matter how
the solution is picked. F ={{1,2,3},{3,4,5},{2,6}}
F={
{1},{2},{3},{4}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5}, 14,5}, {2,6}
{1,2,3},{3,4,5}
}




Extended Set System

v’ The size of an optimal cover in
both set systems are the same. Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F ={{1,2,3},{3,4,5},{2,6}}
F =
{1},{2}, {3}, 14}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5},{4,5},{2,6}
{1,2,3},{3,4,5}
}
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v’ The size of an optimal cover in
both set systems are the same. Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F = {{1,2,3}, {345}, {2,6}}
F={
11}, 12}, 13}, 14}, {5}, {6}
{1,2},{1,3},12,3},{3,4},{3,5}, {4,5},{2,6}
{1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:
SOlut|0n W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing
all subsets of sets in F.
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Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:

SOlut|0n W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing

all subsets of sets in F.

e |dea: Pruning the cover

F = {{1,2,3},{3,4,5},{2, 6}}
=]
13,12}, {3}, 14}, {5}, {6}
(1,2},{1,3},{2,3},(3,4},{3,5}, (4,5}, 2,6}
(1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:
SOlut|On W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing
i . all subsets of sets in F.
e |dea: Pruning the cover

F = {{1,2,3},{34,5},{2,6}}

> Extended Set System has F={
exponentially many sets {1},{2},{3}, {4}, {5}, {6}
e Work with the original set t1,23,11,3}, 832}524{135?} t4,5},12,6)
system, 1

e Solve the oracle on F but and
convert it to a solution for F



Implementing MWU in Stream (II)

e We want to solve the oracle for (U, 75)

O Find some solution for the oracle (U, F), = ¢ o g = {1 If S is one of the k heaviest set,

B 0 Otherwise.
O Prune it to get a solution for (U, F)

+/ Obtains width = 1
xThe average constraint may not be satisfied any more!

* Instead find a solution that maximizes coverage
~/Coverage remains unchanged after pruning

O There is a cover of size k,

ﬁ/The solution of maximum k-coverage satisfies the average constraint of the
set cover too; even after the pruning: YiseF XsDs = DpcuPe = 1

Oracle(F, U, k, p)

diser Xs < k Next Goal:
Given a set system (U,F), and a
DiserXsps =1 —¢ parameter k, solve the (weighted)
xs 20 VSEF fractional Max k-Cover in one pass

—1S25:365x5—1gl Ve € U




The Plan

 The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

 Implement MWU Oracle Naively in the streaming

(1 + £)-appx 0(*'°8™/ ,)-pass 0(n)-space

e Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover



Max k-Cover Problem

Input: a collection F of sets S, ..., S,

FachScU={1,..,n} Fractional Max k-Cover
Max-Cover-LP(F, U, k)

Output: k sets of F such that:

B Max. Z
Maximizes the total coverage,; Lecu Ze

|UsecS | s.t. YserXs <k
dseesXs =22 Ve €U
Complexity: Xg = 0 VSEF
e NP-hard Zp < 1 VeeU

e Greedy: (1 — %)-approximation

e One pass (1 — g)-approx. using
0(m/e?) space [MV17], [BEM17]



Weighted Max k-Cover Problem

Input: a collection F of sets S, ..., S
EachSC U ={1,...,n}

m

Output: k sets of F such that:
Maximizes the total coverage,;

|UseeS|

Complexity:
e NP-hard

e Greedy: (1 — %)-approximation

e One pass (1 — g)-approx. using
0(m/e?) space [MV17], [BEM17]

Fractional (Weighted) Max k-Cover

Max-Cover-LP(F, U, k, p)

Max. Zeeu PeZe

s.t. diserXs <k
Lsees Xs = Ze

Xg >0

Ze <1

Ve €U
VS eF
Ve €U




Fractional Max k-Cover in One Pass

e Component | (Element Sampling):
1. Sample 6(3%) elements in U’ according to p.

2. In one pass over the stream: Store F', the intersection of all sets
in F with U’
3. Return the best k-cover of the sampled elements.

O w.h.p. the constructed cover is a (1 — €)-approximate solution of
the main instance.

0 Required space: O0(mk/&?)

e Component Il (Covering Common Elements):

. . k k
O In the preprocessing step, pick xcmn=<%, ,%)

0 All frequently occurring elements will be covered.

. m
O We can focus on elements with degree < o

0 Required space: 0 (mk X £) = 0(m/e3)

€ g2



The pruning

We have:
 Solution X on the original set system (U, F)

e The coverage Y, := ).¢5, X5 Of every element by the solution of the original set
system X can be computed in one pass.

We need:

« Convert X to a solution x’ on the extended set system (U, F) so that x’ can be
averaged in the end of the T iterations.

* The coverage y, := Y.¢50 Xs by the solution X' to update the weights of MWU
o pit! =pi(1-0(e) x (y.' - 1))
» The Pruning: needs to be done fractionally.

Lemma: There exists a polynomial time algorithm to prune the fractional

solution X of the maximum coverage on (U, F) to get a solution x of (U, F)
s.t. the coverage of every element is capped by 1, i.e., y,' = Min(y,, 1).

S




Implementing MWU in Stream (II)

Solve fractional Max k Cover in one pass find X and in one pass y,

Obtain x' and y, using the lemma.

x' satisfies the average constraint.

Update the probabilities according to y,

width is 1

The number of required rounds of MWU is O(

Oracle(F, U, k, p)
Lser Xs < k

YserXsps =1 —¢
XSZO VS eF

_1SZS:eES xS—].Sl Ve €U

Performance

(1 + €)-approximation
0('°8 "/ 2) passes
0(™/_s) space

logn
g? )

Challenge:
Can we run several rounds of MWU in
one pass of the streaming algorithm?



The Plan

e The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

(1 + £)-appx 0(k log n/gz)-pass 0(n)-space

e Reducing the number ot passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

e Reducing the number of passes to a constant
O Running several rounds of MWU together by sampling in advance



Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After € rounds of MWU:
Key observation:

?
The probability vector p changes slowly. pstt < pt(1+0(9))
. logn
Setting £ = O rounds,
Component | (Element Sampling): 8 ( £2d ) De

A ; increases at most b no(é)
Sample 0(5_2) elements according to p. y

Return the best k-cover of the sampled
elements.




Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After £ rounds of MWU:
Key observation:

¢
The probability vector p changes slowly. PgH = pé(l + 0(8))
. logn
Setting £ = O rounds,

Component | (Element Sampling): 8 ( e2d ) (1) De

- O(1/ed) . O(—
sample 0 ("~ ——) elements according to p. increases at most by n™"ed
Return the best k-cover of the sampled
elements.

To perform 0(122{;;)

+ Rejection Sampling: To rounds together
adjust the probability p, Keep each
sample w.p.

pg+{’/pgn0(1/ed)




Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After € rounds of MWU:
Key observation:

The probability vector p changes slowly. pttt < pt(1+ O(e))

Component | (Element Sampling): o
O(1/ed)

Sample O(R" ~———) elements according to p. increases at most by n- ‘ed

Return the best k-cover of the sampled
elements.

0(1/ed)

Space increases by n
+ Re!ectlon Samphrrg: To ‘ Teremas deareeses by 0 lozgn
adjust the probability p, e2d




Implementing MWU in Stream (II)

* Algorithm will go over d passes:

~ knO(1/ed) 1
O Sample O(ng—z) elements for each of the O ( e

5 ) rounds assigned to
€<d

this pass.
O In one pass find the projection of all sets on these sampled elements in
é(mno(l/d‘g)) space. (this uses the common element component).

logn

rounds.
7)

O For each of the O (

62
= Adjust the samples properly.
= Solve fractional Max k Cover find xg
= Update the probabilities for all the sampled elements
O In one pass update the probabilities for all the elements.

Performance

(1 + g)-approximation
0(d) passes
0 (mn°(/4€)) space

Oracle(F, U, k, p)
diser Xs < k

diserXsps =1 —¢
xSZO VS eF
_1SZS:eESxS_131 Ve eU




The Plan

 The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

 Implement MWU Oracle Naively in the streaming

(1+ €)-appx | O(*'°8 "/ 2)-pass 0(n)-space

e Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

(1+¢&)-appx | 0(°8"/,)-pass 0(m/e3)-space

e Reducing the number of passes to a constant
O Running several rounds of MWU together by sampling in advance

(1 + &)-appx 0(p)-pass 0 (mn°1/2)) _space



Summary

e Considered MWU for solving fractional-Set Cover

1 : :
= One pass for each of the O(qb ;g %) iterations.
. . - k1l .
= Trivial solution gets ¢ = k giving 0 (——=—) (1 + &)-approximation

€2

_ O(klogn /€?) passes
= No way to reduce the width to smaller than k.

0(n) space
e Change the set system to extended set system.
= Solution remains the same.
= Goal changes to weighted maximum coverage that
is preserved under the pruning.

= Obtain ¢ = 1 giving O(

Performance

(1 + €)-approximation
0('°8"/ ;) passes
0(™/.3) space

1 .
szn) pass algorithm

 Run several rounds of MWU together
= The probabilities change slowly over iterations.

Performance

(1 + &)-approximation
0(d) passes
0 (mn°/49)) space

= Sample more elements in advance and adjust the
probability.

= Get constant pass algorithm.



Open Questions

e Open Questions:
1. Better bound for general covering/packing LP?

2. Any constant pass polylog-approximation algorithm for Weighted
Set Cover with o(mn) space ?

3. Optimal number of passes for O(log n)-approx. Set Cover?
|.  Best Upper Bound: O(log n)-pass

Il. Best Lower Bound: Q(lolg"lgog —)-pass [cw1e]

ThankYou
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