Fractional Set Cover in the Streaming Model

Piotr Indyk Sepideh Mahabadi Ronitt Rubinfeld
MIT Columbia University MIT/TAU
Jonathan Ullman Ali Vakilian Anak Yodpinyanee

Northeastern Univ MIT MIT

Set Cover Problem

 Input: Collection F of sets 55, ...

of U =1{1,..,n}

, S, each a subset

Set Cover Problem

 Input: Collection F of sets Sy, ..., S,,;, each a subset
of U = {1, ...,n}

Set Cover Problem

 Input: Collection F of sets Sy, ..., S,,;, each a subset
of U = {1, ...,n}

e Output: a subset C of F such that:
OC covers U
O |C| is minimized

Set Cover Problem

 Input: Collection F of sets Sy, ..., S,,;, each a subset
of U = {1, ...,n}

e Output: a subset C of F such that:
OC covers U
O |C| is minimized

e Complexity:
O NP-hard

Set Cover Problem

 Input: Collection F of sets Sy, ..., S,,;, each a subset
of U = {1, ...,n}

e Output: a subset C of F such that:
OC covers U
O |C| is minimized

e Complexity:
O NP-hard
0 Greedy (In n)-approximation algorithm

Set Cover Problem

 Input: Collection F of sets 54, ..., S,,,, each a subset
of U =1{1,..,n}

e Qutput: a subset C of F such that:
O C covers U
O |C| is minimized

e Complexity:
O NP-hard

0 Can’t do better unless P=NP
[LY91][RS97][Fei98][AMS06][DS14]

Streaming Set Cover

e Model [SG09]

O Elements are store in the main memory

QOO

Memory

Streaming Set Cover

e Model [SG09]
O Elements are store in the main memory
O Sequential access to 54, S5, ..., Sy

Streaming Set Cover

e Model [SG09]
O Elements are store in the main memory
O Sequential access to 54, S5, ..., Sy
1. One (or few) passes
2. Sublinear (i.e., o(mn)) storage
3. (Hopefully) decent approximation factor

ﬁ

1,3 4 2,5 1,2,4,5 oo
—

QOO

Memory: sublinear in (mn)

10

Streaming Set Cover

e Model [SG09]
O Elements are store in the main memory
O Sequential access to 54, S5, ..., Sy
1. One (or few) passes
2. Sublinear (i.e., o(mn)) storage
3. (Hopefully) decent approximation factor

ﬁ

1,3 4 2,5 1,2,4,5 oo
—

QOO

e Why? Memory: sublinear in (mn)
O A classic optimization problem
O Application in “Big Data”: Clustering, Topic Coverage

11

Fractional Set Cover

* Each set can be picked fractionally (assigning value
x; € [0,1] to each set S;)

Fractional Solution ' po .
of Set Cover R:Ziﬁr;:;d [(Iogtg n)-é: F;P:O)t(_lmate]
ntegral Solution
(xlixzi'“;xm) 8

Pick S; w.p. &« x;logn

* The first step in solving covering LPs in stream
O Packing LP (Fractional Maximum Matching)[AG11]

Previous and Our Results

: O(logn) 1 0 (mn)
I h
Greedy Algorithm 0(log n) n O(n)
[SG09] 0(logn) 0(logn) 0(n)
(on®/s ~
[ER14, CW16] (5/) 1/6 —1 0(n)
< Q(n°/6%)
0 <1 [DIMV14, HIMV16, BEM17] 0(p/d) 0(1/9) 0 (mn?)
\ [AKL16, A17] 1/6 polylog Q(mn?)
0(1/8) 0(mn?)
p = approximation factor for offline Set Cover n = number of elements

- m = number of sets
O(f(m, n)) = 0(f(m,n) e “log® mlog® n)

This Talk

4)

Theorem: there exists a (1 + €) approximation algorithm for the fractional
set cover problem in the streaming setting, with d passes, that uses

~ .
O(mno(de) + n) space.

———

The Plan

The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

Implement MWU Oracle Naively in the streaming

Reducing the number of passes to logarithmic

Reducing the number of passes to a constant

The Plan

The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

e Implement MWU Oracle Naively in the streaming
> 0(k logn) passes

Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

e Reducing the number of passes to a constant

MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for
a weighted average constraint.

e Take the solution

e The less a constraint is satisfied, the less weight it
gets for the next iteration

e Repeat the above for T iterations

* Report the average solution found over all
iterations.

e T=0(¢plogn /e?)

CoveringLP(A,xm, cm> bn)

Min ¢l x
Ax > Db
x =0

M(Anxm» Cm» bn» pt)

Min cT x

(wt)TAx > (wH)Th
x>0

wl e« (1,4,1) = uniform weights
Fort=1,t < T do > T iterations

x! « solution of Oracle = avg constraint w.r.t. wt

witl « Update(w?t, x?)

& decrease weight of constraints oversatisfied by x!
X = avg(xy, - xr)

MWU Update Rule:

Wet-l-1 = Wet (1 - E/‘l)(Aext - be))

Vi,t:—¢p < Agx* —b, < ¢

Vi: A, x = b, — ¢

MWU to solve LP

CoveringLP(A,,«m, Cm> Pr)

Min ¢l x
Ax > b
x =0

MWU to solve LP

Algorithm:

Instead of solving for all the constraints, solve for
a weighted average constraint.

Take the solution

The less a constraint is satisfied, the less weight it
gets for the next iteration

Repeat the above for T iterations

Report the average solution found over all
iterations.

CoveringLP(A,xm, cm> bn)

Min ¢l x
Ax > Db
x =0

M(Anxm» Cm: b'l’l’ pt)

Min cT x

(Wt)TAX > (wH)Th
x>0

MWU to solve LP

Algorithm:

Instead of solving for all the constraints, solve for
a weighted average constraint.

Take the solution

The less a constraint is satisfied, the less weight it
gets for the next iteration

Repeat the above for T iterations

Report the average solution found over all
iterations.

CoveringLP(A,xm, cm> bn)

Min ¢l x
Ax > Db
x =0

Oracle(4,,xm> ¢m» by, P°)

Min cT x

(Wt)TAx > (wH)Th
x>0

wl e« (1,4,1) = uniform weights
Fort=1,t < T do > T iterations

x! « solution of Oracle = avg constraint w.r.t. wt

MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for
a weighted average constraint.

e Take the solution

e The less a constraint is satisfied, the less weight it
gets for the next iteration

e Repeat the above for T iterations

* Report the average solution found over all
iterations.

CoveringLP(A,xm, cm> bn)

Min ¢l x
Ax > Db
x =0

M(Anxm» Cm» b‘l’l’ pt)

Min cT x

(Wt)TAx > (wH)Th
x>0

wl e« (1,4,1) = uniform weights
Fort=1,t < T do > T iterations

x! « solution of Oracle = avg constraint w.r.t. wt

witl « Update(w?t, x?)

& decrease weight of constraints oversatisfied by x!
X = avg(xy, - xr)

MWU Update Rule:

Wet-l-1 = Wet (1 - S/d)(Aext - be))

MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for
a weighted average constraint.

e Take the solution

e The less a constraint is satisfied, the less weight it
gets for the next iteration

e Repeat the above for T iterations

* Report the average solution found over all

CoveringLP(A,,«m, Cm> Pr)

Min ¢l x
Ax > Db
x =0

Oracle(4,,xm> ¢m» by, P°)

T

_ _ Min C” X

Iterations. (Wt)TAx > (Wt)Tb
o T = X 2 O
wl e« (1,-,1) = uniform weights MWU Update Rule:

Fort=1,t < T do > T iterations
x! « solution of Oracle = avg constraint w.r.t. wt
witl « Update(w?t, x?)
& decrease weight of constraints oversatisfied by x!
X = avg(xy, - xr)

Wet-l-1 = Wet (1 - S/d)(Aext - be))

Vi: A, Xx = b, — ¢

MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for
a weighted average constraint.

e Take the solution

e The less a constraint is satisfied, the less weight it
gets for the next iteration

e Repeat the above for T iterations

* Report the average solution found over all
iterations.

T = 0(¢logn /€?)

CoveringLP(A,xm, cm> bn)

Min ¢l x
Ax > Db
x =0

mflnxm» Cm» bn» pt)

Min cT x

(wt)TAx > (wH)Th
x>0

wl e« (1,4,1) = uniform weights
Fort=1,t < T do > T iterations

x! « solution of Oracle = avg constraint w.r.t. wt

witl « Update(w?t, x?)

& decrease weight of constraints oversatisfied by x!
X = avg(xy, - xr)

MWU Update Rule:

Wet-l-1 = Wet (1 - S/d)(Aext - be))

Vi: A, Xx = b, — ¢

MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for
a weighted average constraint.

e Take the solution

e The less a constraint is satisfied, the less weight it
gets for the next iteration

e Repeat the above for T iterations

* Report the average solution found over all
iterations.

T = 0(¢logn /€?)

CoveringLP(A,xm, cm> bn)

Min ¢l x
Ax > Db
x =0

M(Anxm» Cm» bn» pt)

Min cT x

(wt)TAx > (wH)Th
x>0

wl e« (1,4,1) = uniform weights
Fort=1,t < T do > T iterations

x! « solution of Oracle = avg constraint w.r.t. wt

witl « Update(w?t, x?)

& decrease weight of constraints oversatisfied by x!
X = avg(xy, - xr)

MWU Update Rule:

Wet-l-1 = Wet (1 - E/‘l)(Aext - be))

Vi: A, x = b, — ¢

Vi,t:—¢p < Agxt —b, < ¢

The Plan

The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

Implement MWU Oracle Naively in the streaming
> 0(k 1Ogn) passes

€2

Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

Reducing the number of passes to a constant
O Running several rounds of MWU together by sampling in advance

Multiplicative Weight Update (Set Cover)

SET-COVER LP(F, U):

Min Xser Xs

st. DgeesXs =1 Ve € U
Xg >0 VS EF

Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(F, U, k)

LseF Xs < k

st. DgeesXs =1 VeeU
Xg >0 VS EF

Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(F, U, k)

Assign weight w, to each
Yeer Xs < k element e (initially one)

Solve the weighted average
constraint approximately!

Xg >0 VS eEF

Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(F, U, k)

Lser Xs < k

Zee‘u We ZeES Xs = Zeeu We
Xg = 0 VS eF

Zee‘u We ZeES Xs = Zee‘u We
YseF Xs eesWe = Xeey We

Assign weight w, to each
element e (initially one)

Solve the weighted average
constraint approximately!

ZSE:F XsWg = Zee’u We Define wg = Y oesWe

By normalizing weight vector w (prob. vector p):

Yser Xsbs = 1

Multiplicative Weight Update (Set Cover)

Oracle(F, U, k, p)
Assign weight w, to each

Yeer Xs < k element e (initially one)

Solve the weighted average

Diser XsPs = 1 constraint approximately!
Xg >0 VS eF

Multiplicative Weight Update (Set Cover)

Oracle(F, U, k, p)
Assign weight w, to each

< element e (initially one)
Solve the weighted average
LserXsps = 1—¢ constraint approx. w.r.t pt (< wt): xt
Xg >0 VS eF
—p < Vepes xs— 1< P Ve €U Update the prob vector

Width of ptt =pt(1-0(e) x (Tx§ — 1))

oracle

¢ lo

MWU Theorem. After T = O(2g n) rounds,

Bounding the max number of times i B
an element gets covered X =g x*) is an e-feasible solution.

ZS:eesxszl_S Ve eU

Finally, we can then pick k(1 + €) sets to cover
all the elements!

The Plan

The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

Implement MWU Oracle Naively in the streaming
> 0(k 1Ogn) passes

€2

Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

Reducing the number of passes to a constant
O Running several rounds of MWU together by sampling in advance

The Oracle

Given: a probability vector p on the elements, and k

Goal: pick (fractionally) k sets by assigning values to x¢ such that

1. The total probability (weight) of the sets in the solution is maximized,
i.e., at least (1 — ¢€), where

= probability of a set is the sum of the probability of its elements, i.e.,
Ps = Zees Pe

2. The width (total number of times any element is covered) is small.

Oracle(¥, U, k,p) Initial plan:
e solve the Oracle in one pass
Yser Xs Sk and low space,
e gives an algorithm for set
Lser XsPs 21— ¢ cover with T passes and
xs 2 0 VSEF low space.
—) < Ysees Xs— 1< ¢ VeeU

The Plan

 The Multiplicative Weight Update framework
MWU for the Set Cover
The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

Implementing MWU in Stream (1)

If S is the heaviest set,

Naive solution for the oracle: ~ IIEEEEEED> x5 = {k .
0 oOtherwise.

Width (the number of times an element is covered)
is trivially k

The number of required rounds to obtain (1 + €)-
klogn)

Performance

(1 + &)-approximation
o(kloe "/ 2) passes
0(n) space

approximation is O(

g2

Streaming: find the heaviest set w.r.t p in a single
pass over the stream

Challenge:

Oracle(F, U, k, p) Is it possible to find a solution to the
oracle with smaller width?

Lser Xs S k No, simply all sets may contain a
designated element e and hence
DserXsps =1 —¢ the width of any solution to the

xs =0 VS € F oracle is always k no matter how

—p < Yopes Xs— 1< VeeU the solution is picked.

The Plan

 The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

 Implement MWU Oracle Naively in the streaming

(1 + £)-appx o(*'es "/ 2)-pass 0 (n)-space

e Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

 Reducing the number of passes to a constant
O Running several rounds of MWU together by sampling in advance

The Plan

 The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

 Implement MWU Oracle Naively in the streaming

e Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System

Extended Set System

Challenge: Different Set System?

Is it possible to find a solution to the

oracle in set system (U,F) with Extended Set System of F:

smaller width? The set system (U, F) (extension
No, simply all sets may contain a of F) is the collection containing

designa‘l'ed element e and hence all subsets of sets in F.
the width of any solution to the
oracle is always k no matter how
the solution is picked. F ={{1,2,3},{3,4,5},{2,6}}
F={
{1},{2},{3},{4}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5}, 14,5}, {2,6}
{1,2,3},{3,4,5}
}

Extended Set System

v’ The size of an optimal cover in
both set systems are the same. Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F ={{1,2,3},{3,4,5},{2,6}}
F =
{1},{2}, {3}, 14}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5},{4,5},{2,6}
{1,2,3},{3,4,5}
}

Extended Set System

v’ The size of an optimal cover in
both set systems are the same. Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F = {{1,2,3}, {345}, {2,6}}
F={
11}, 12}, 13}, 14}, {5}, {6}
{1,2},{1,3},12,3},{3,4},{3,5}, {4,5},{2,6}
{1,2,3},{3,4,5}
}

Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:
SOlut|0n W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing
all subsets of sets in F.

F = {{1,2,3}, (34,5}, {2,6}}
7=l
13,12}, {3}, {4}, {5}, {6}
(1,2},{1,3},{2,3}, (3,4}, {3,5}, (4,5}, (2,6}
(1,2,3},{3,4,5)
}

Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:
SOlut|0n W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing
all subsets of sets in F.

F=1{{1,2,3},{3,45},{2,6}}
F =
13,12}, {3}, {4}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5},{4,5},{2,6}
{1,2,3},{3,4,5}
}

Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:
SOlut|0n W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing
all subsets of sets in F.

F = {{1,23},{3,4,5},{2.,6}}
7=l
13,12}, {3}, {4}, {5}, {6}
(1,2},{1,3},{2,3},(3,4},{3,5}, (4,5}, (2,6}
(1,2,3},{3,4,5}
}

Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:
SOlut|0n W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing
all subsets of sets in F.

F = {{1,2,3},{3,4,5},{2, 6}}
=]
13,12}, {3}, 14}, {5}, {6}
(1,2},{1,3},{2,3},(3,4},{3,5}, (4,5}, 2,6}
(1,2,3},{3,4,5}
}

Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:

SOlut|0n W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing

all subsets of sets in F.

e |dea: Pruning the cover

F = {{1,2,3},{3,4,5},{2, 6}}
=]
13,12}, {3}, 14}, {5}, {6}
(1,2},{1,3},{2,3},(3,4},{3,5}, (4,5}, 2,6}
(1,2,3},{3,4,5}
}

Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:
SOlut|On W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing
i . all subsets of sets in F.
e |dea: Pruning the cover

F = {{1,2,3},{34,5},{2,6}}

> Extended Set System has F={
exponentially many sets {1},{2},{3}, {4}, {5}, {6}
e Work with the original set t1,23,11,3}, 832}524{135?} t4,5},12,6)
system, 1

e Solve the oracle on F but and
convert it to a solution for F

Implementing MWU in Stream (II)

e We want to solve the oracle for (U, 75)

O Find some solution for the oracle (U, F), = ¢ o g = {1 If S is one of the k heaviest set,

B 0 Otherwise.
O Prune it to get a solution for (U, F)

+/ Obtains width = 1
xThe average constraint may not be satisfied any more!

* Instead find a solution that maximizes coverage
~/Coverage remains unchanged after pruning

O There is a cover of size k,

ﬁ/The solution of maximum k-coverage satisfies the average constraint of the
set cover too; even after the pruning: YiseF XsDs = DpcuPe = 1

Oracle(F, U, k, p)

diser Xs < k Next Goal:
Given a set system (U,F), and a
DiserXsps =1 —¢ parameter k, solve the (weighted)
xs 20 VSEF fractional Max k-Cover in one pass

—1S25:365x5—1gl Ve € U

The Plan

 The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

 Implement MWU Oracle Naively in the streaming

(1 + £)-appx 0(*'°8™/ ,)-pass 0(n)-space

e Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

Max k-Cover Problem

Input: a collection F of sets S, ..., S,

FachScU={1,..,n} Fractional Max k-Cover
Max-Cover-LP(F, U, k)

Output: k sets of F such that:

B Max. Z
Maximizes the total coverage,; Lecu Ze

|UsecS | s.t. YserXs <k
dseesXs =22 Ve €U
Complexity: Xg = 0 VSEF
e NP-hard Zp < 1 VeeU

e Greedy: (1 — %)-approximation

e One pass (1 — g)-approx. using
0(m/e?) space [MV17], [BEM17]

Weighted Max k-Cover Problem

Input: a collection F of sets S, ..., S
EachSC U ={1,...,n}

m

Output: k sets of F such that:
Maximizes the total coverage,;

|UseeS|

Complexity:
e NP-hard

e Greedy: (1 — %)-approximation

e One pass (1 — g)-approx. using
0(m/e?) space [MV17], [BEM17]

Fractional (Weighted) Max k-Cover

Max-Cover-LP(F, U, k, p)

Max. Zeeu PeZe

s.t. diserXs <k
Lsees Xs = Ze

Xg >0

Ze <1

Ve €U
VS eF
Ve €U

Fractional Max k-Cover in One Pass

e Component | (Element Sampling):
1. Sample 6(3%) elements in U’ according to p.

2. In one pass over the stream: Store F', the intersection of all sets
in F with U’
3. Return the best k-cover of the sampled elements.

O w.h.p. the constructed cover is a (1 — €)-approximate solution of
the main instance.

0 Required space: O0(mk/&?)

e Component Il (Covering Common Elements):

. . k k
O In the preprocessing step, pick xcmn=<%, ,%)

0 All frequently occurring elements will be covered.

. m
O We can focus on elements with degree < o

0 Required space: 0 (mk X £) = 0(m/e3)

€ g2

The pruning

We have:
 Solution X on the original set system (U, F)

e The coverage Y, :=).¢5, X5 Of every element by the solution of the original set
system X can be computed in one pass.

We need:

« Convert X to a solution x’ on the extended set system (U, F) so that x’ can be
averaged in the end of the T iterations.

* The coverage y, := Y.¢50 Xs by the solution X' to update the weights of MWU
o pit! =pi(1-0(e) x (y.' - 1))
» The Pruning: needs to be done fractionally.

Lemma: There exists a polynomial time algorithm to prune the fractional

solution X of the maximum coverage on (U, F) to get a solution x of (U, F)
s.t. the coverage of every element is capped by 1, i.e., y,' = Min(y,, 1).

S

Implementing MWU in Stream (II)

Solve fractional Max k Cover in one pass find X and in one pass y,

Obtain x' and y, using the lemma.

x' satisfies the average constraint.

Update the probabilities according to y,

width is 1

The number of required rounds of MWU is O(

Oracle(F, U, k, p)
Lser Xs < k

YserXsps =1 —¢
XSZO VS eF

_1SZS:eES xS—].Sl Ve €U

Performance

(1 + €)-approximation
0('°8 "/ 2) passes
0(™/_s) space

logn
g?)

Challenge:
Can we run several rounds of MWU in
one pass of the streaming algorithm?

The Plan

e The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

(1 + £)-appx 0(k log n/gz)-pass 0(n)-space

e Reducing the number ot passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

e Reducing the number of passes to a constant
O Running several rounds of MWU together by sampling in advance

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After € rounds of MWU:
Key observation:

?
The probability vector p changes slowly. pstt < pt(1+0(9))
. logn
Setting £ = O rounds,
Component | (Element Sampling): 8 (£2d) De

A ; increases at most b no(é)
Sample 0(5_2) elements according to p. y

Return the best k-cover of the sampled
elements.

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After £ rounds of MWU:
Key observation:

¢
The probability vector p changes slowly. PgH = pé(l + 0(8))
. logn
Setting £ = O rounds,

Component | (Element Sampling): 8 (e2d) (1) De

- O(1/ed) . O(—
sample 0 ("~ ——) elements according to p. increases at most by n™"ed
Return the best k-cover of the sampled
elements.

To perform 0(122{;;)

+ Rejection Sampling: To rounds together
adjust the probability p, Keep each
sample w.p.

pg+{’/pgn0(1/ed)

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After € rounds of MWU:
Key observation:

The probability vector p changes slowly. pttt < pt(1+ O(e))

Component | (Element Sampling): o
O(1/ed)

Sample O(R" ~———) elements according to p. increases at most by n- ‘ed

Return the best k-cover of the sampled
elements.

0(1/ed)

Space increases by n
+ Re!ectlon Samphrrg: To ‘ Teremas deareeses by 0 lozgn
adjust the probability p, e2d

Implementing MWU in Stream (II)

* Algorithm will go over d passes:

~ knO(1/ed) 1
O Sample O(ng—z) elements for each of the O (e

5) rounds assigned to
€<d

this pass.
O In one pass find the projection of all sets on these sampled elements in
é(mno(l/d‘g)) space. (this uses the common element component).

logn

rounds.
7)

O For each of the O (

62
= Adjust the samples properly.
= Solve fractional Max k Cover find xg
= Update the probabilities for all the sampled elements
O In one pass update the probabilities for all the elements.

Performance

(1 + g)-approximation
0(d) passes
0 (mn°(/4€)) space

Oracle(F, U, k, p)
diser Xs < k

diserXsps =1 —¢
xSZO VS eF
_1SZS:eESxS_131 Ve eU

The Plan

 The Multiplicative Weight Update framework
0 MWU for the Set Cover
O The average constraint: Oracle

 Implement MWU Oracle Naively in the streaming

(1+ €)-appx | O(*'°8 "/ 2)-pass 0(n)-space

e Reducing the number of passes to logarithmic
O Reducing Width via Extended Set System
O Fractional Max k-Cover

(1+¢&)-appx | 0(°8"/,)-pass 0(m/e3)-space

e Reducing the number of passes to a constant
O Running several rounds of MWU together by sampling in advance

(1 + &)-appx 0(p)-pass 0 (mn°1/2)) _space

Summary

e Considered MWU for solving fractional-Set Cover

1 : :
= One pass for each of the O(qb ;g %) iterations.
. . - k1l .
= Trivial solution gets ¢ = k giving 0 (——=—) (1 + &)-approximation

€2

_ O(klogn /€?) passes
= No way to reduce the width to smaller than k.

0(n) space
e Change the set system to extended set system.
= Solution remains the same.
= Goal changes to weighted maximum coverage that
is preserved under the pruning.

= Obtain ¢ = 1 giving O(

Performance

(1 + €)-approximation
0('°8"/ ;) passes
0(™/.3) space

1 .
szn) pass algorithm

 Run several rounds of MWU together
= The probabilities change slowly over iterations.

Performance

(1 + &)-approximation
0(d) passes
0 (mn°/49)) space

= Sample more elements in advance and adjust the
probability.

= Get constant pass algorithm.

Open Questions

e Open Questions:
1. Better bound for general covering/packing LP?

2. Any constant pass polylog-approximation algorithm for Weighted
Set Cover with o(mn) space ?

3. Optimal number of passes for O(log n)-approx. Set Cover?
|. Best Upper Bound: O(log n)-pass

Il. Best Lower Bound: Q(lolg"lgog —)-pass [cw1e]

ThankYou

	Slide Number 1
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Streaming Set Cover
	Streaming Set Cover
	Streaming Set Cover
	Streaming Set Cover
	Fractional Set Cover
	Previous and Our Results
	This Talk
	 The Plan
	 The Plan
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	 The Plan
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	 The Plan
	The Oracle
	 The Plan
	Implementing MWU in Stream (I)
	 The Plan
	 The Plan
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Implementing MWU in Stream (II)
	 The Plan
	Max k-Cover Problem
	Weighted Max k-Cover Problem
	Fractional Max k-Cover in One Pass
	The pruning
	Implementing MWU in Stream (II)
	 The Plan
	Reducing the Number of Passes Further!
	Reducing the Number of Passes Further!
	Reducing the Number of Passes Further!
	Implementing MWU in Stream (II)
	 The Plan
	Summary
	Open Questions

