Fractional Set Cover in the Streaming Model

Piotr Indyk

Sepideh Mahabadi Columbia University

Ronitt Rubinfeld MIT/TAU

Jonathan Ullman Northeastern Univ Ali Vakilian

Anak Yodpinyanee

• Input: Collection \mathcal{F} of sets S_1, \dots, S_m , each a subset of $\mathcal{U} = \{1, \dots, n\}$

• Input: Collection \mathcal{F} of sets S_1, \dots, S_m , each a subset of $\mathcal{U} = \{1, \dots, n\}$

- Input: Collection $\mathcal F$ of sets $S_1,\ldots,S_m,$ each a subset of $\mathcal U=\{1,\ldots,n\}$
- Output: a subset \mathcal{C} of \mathcal{F} such that:
 - $\circ C$ covers U $\circ |C|$ is minimized

- Input: Collection $\mathcal F$ of sets $S_1,\ldots,S_m,$ each a subset of $\mathcal U=\{1,\ldots,n\}$
- Output: a subset \mathcal{C} of \mathcal{F} such that:
 - $\circ C$ covers U $\circ |C|$ is minimized

• Complexity: o NP-hard

- Input: Collection ${\mathcal F}$ of sets $S_1,\ldots,S_m,$ each a subset of ${\mathcal U}=\{1,\ldots,n\}$
- Output: a subset \mathcal{C} of \mathcal{F} such that:
 - $\circ C$ covers U $\circ |C|$ is minimized

- Complexity:
 - \circ NP-hard

 \circ Greedy (ln *n*)-approximation algorithm

- Input: Collection ${\mathcal F}$ of sets $S_1,\ldots,S_m,$ each a subset of ${\mathcal U}=\{1,\ldots,n\}$
- Output: a subset \mathcal{C} of \mathcal{F} such that:
 - $\circ C$ covers U $\circ |C|$ is minimized

- Complexity:
 - o NP-hard
 - \circ Greedy $(\ln n)$ -approximation algorithm
 - o Can't do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]

• Model [SG09]

o Elements are store in the main memory

• Model [SG09]

o Elements are store in the main memory

 \circ Sequential access to S_1, S_2, \dots, S_m

- Model [SG09]
 - o Elements are store in the main memory
 - \circ Sequential access to S_1, S_2, \dots, S_m
 - 1. One (or few) passes
 - 2. Sublinear (i.e., o(mn)) storage
 - 3. (Hopefully) decent approximation factor

1,2,4,5 (2) (3)(5)(4)Memory: sublinear in (*mn*)

- Model [SG09]
 - o Elements are store in the main memory
 - \circ Sequential access to S_1, S_2, \dots, S_m
 - 1. One (or few) passes
 - 2. Sublinear (i.e., o(mn)) storage
 - 3. (Hopefully) decent approximation factor

- Why?
 - A classic optimization problem
 - Application in "Big Data": Clustering, Topic Coverage

Fractional Set Cover

• Each set can be picked fractionally (assigning value $x_i \in [0,1]$ to each set S_i)

• The first step in solving covering LPs in stream • Packing LP (Fractional Maximum Matching)[AG11]

Previous and Our Results

	INTEGRAL SET COVER	Approximation	Passes	Space
	Greedy Algorithm	$O(\log n)$ $O(\log n)$	1 n	O(mn) O(n)
< 1 {	[SG09]	$O(\log n)$	$O(\log n)$	$\tilde{O}(n)$
	[ER14, CW16]	$O(n^{\delta}/\delta)$ $\Omega(n^{\delta}/\delta^2)$	$1/\delta - 1$	$\tilde{O}(n)$
	[DIMV14, HIMV16, BEM17]	$O(ho/\delta)$	$O(1/\delta)$	$\tilde{O}(mn^{\delta})$
	[AKL16, A17]	$1/\delta$	polylog	$\widetilde{\Omega}(mn^{\delta})$
	FRACTIONAL SET COVER	1 + ε	$0(1/\delta)$	$\tilde{O}(mn^{\boldsymbol{0}(\boldsymbol{\delta}/\boldsymbol{\varepsilon})})$

ρ = approximation factor for offline **Set Cover**

 $\tilde{O}(f(m,n)) = O(f(m,n) \varepsilon^{-c} \log^{c} m \log^{c} n)$

δ

n = number of *elements* m = number of *sets*

This Talk

Theorem: there exists a $(1 + \epsilon)$ approximation algorithm for the fractional set cover problem in the streaming setting, with d passes, that uses $\tilde{O}(mn^{O(\frac{1}{d\epsilon})} + n)$ space.

The Plan

- The Multiplicative Weight Update framework
 - $\circ~$ MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming
 - $\succ O(\frac{k \log n}{\epsilon^2})$ passes
- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 Fractional Max *k*-Cover
- Reducing the number of passes to a constant

o Running several rounds of MWU together by sampling in advance

The Plan

• The Multiplicative Weight Update framework

- $\circ~$ MWU for the Set Cover
- The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming
 - $\succ O(\frac{k \log n}{\epsilon^2})$ passes
- Reducing the number of passes to logarithmic

 Reducing Width via Extended Set System
 Fractional Max k-Cover
- Reducing the number of passes to a constant

 Running several rounds of MWU together by sampling in advance

Algorithm:

- Instead of solving for all the constraints, solve for a weighted average constraint.
- Take the solution
- The less a constraint is satisfied, the less weight it gets for the next iteration
- Repeat the above for *T* iterations
- Report the average solution found over all iterations.

•
$$T = O(\phi \log n / \epsilon^2)$$

 $w^{1} \leftarrow (1, \dots, 1) \qquad \rhd \text{ uniform weights}$ For $t = 1, t \leq T$ do $\rhd T$ iterations $x^{t} \leftarrow \text{ solution of Oracle } \rhd \text{ avg constraint w.r.t. } w^{t}$ $w^{t+1} \leftarrow \text{Update}(w^{t}, x^{t})$ $\rhd \text{ decrease weight of constraints oversatisfied by } x^{t}$ $\bar{x} = \operatorname{avg}(x_{1}, \dots x_{T})$

<u>CoveringLP($A_{n \times m}, c_m, b_n$)</u> Min $c^T x$ $Ax \geq b$ $x \ge 0$ <u>Oracle($A_{n \times m}, c_m, b_n, p^t$)</u> Min $c^T x$ $(w^t)^T Ax \ge (w^t)^T b$ $x \ge 0$ **MWU Update Rule:** $w_e^{t+1} \coloneqq w_e^t \left(1 - \varepsilon / \phi(A_e x^t - b_e) \right)$

$$\forall i, t: -\phi \le A_e x^t - b_e \le \phi$$

 $\forall i: \ A_e \bar{x} \ge b_e - \varepsilon$

$$\frac{\text{CoveringLP}(A_{n \times m}, c_m, b_n)}{\text{Min } c^T x}$$
$$Ax \ge b$$
$$x \ge 0$$

Algorithm:

- Instead of solving for all the constraints, solve for a weighted average constraint.
- Take the solution
- The less a constraint is satisfied, the less weight it gets for the next iteration
- Repeat the above for *T* iterations
- Report the average solution found over all iterations.

 $\frac{\text{CoveringLP}(A_{n \times m}, c_m, b_n)}{\text{Min } c^T x}$ $Ax \ge b$ $x \ge 0$ $\frac{\text{Oracle}(A_{n \times m}, c_m, b_n, p^t)}{\text{Min } c^T x}$ $(w^t)^T Ax \ge (w^t)^T b$ $x \ge 0$

Algorithm:

- Instead of solving for all the constraints, solve for a weighted average constraint.
- Take the solution

 $w^1 \leftarrow (1, \cdots, 1)$

- The less a constraint is satisfied, the less weight it gets for the next iteration
- Repeat the above for *T* iterations
- Report the average solution found over all iterations.

<u>CoveringLP($A_{n \times m}, c_m, b_n$)</u> Min $c^T x$ $Ax \geq b$ $x \ge 0$ <u>Oracle($A_{n \times m}, c_m, b_n, p^t$)</u> Min $c^T x$ $(w^t)^T Ax \ge (w^t)^T b$ $x \ge 0$

For $t = 1, t \le T$ do \triangleright T iterations $x^t \leftarrow$ solution of Oracle \triangleright avg constraint w.r.t. w^t

▷ uniform weights

Algorithm:

- Instead of solving for all the constraints, solve for a weighted average constraint.
- Take the solution
- The less a constraint is satisfied, the less weight it gets for the next iteration
- Repeat the above for *T* iterations
- Report the average solution found over all iterations.

$$w^{1} \leftarrow (1, \dots, 1) \qquad \rhd \text{ uniform weights}$$
For $t = 1, t \leq T$ do $\rhd T$ iterations
 $x^{t} \leftarrow \text{ solution of Oracle } \rhd \text{ avg constraint w.r.t. } w^{t}$
 $w^{t+1} \leftarrow \text{Update}(w^{t}, x^{t})$
 $\rhd \text{ decrease weight of constraints oversatisfied by } x^{t}$
 $\bar{x} = \operatorname{avg}(x_{1}, \dots x_{T})$

$$\frac{\text{CoveringLP}(A_{n \times m}, c_m, b_n)}{\text{Min } c^T x}$$

$$Ax \ge b$$

$$x \ge 0$$

$$\frac{\text{Oracle}(A_{n \times m}, c_m, b_n, p^t)}{\text{Min } c^T x}$$

$$(w^t)^T Ax \ge (w^t)^T b$$

$$x \ge 0$$

$$\frac{\text{MWU Update Rule:}}{w_e^{t+1}} := w_e^t (1 - \varepsilon/\phi (A_e x^t - b_e))$$

Algorithm:

- Instead of solving for all the constraints, solve for a weighted average constraint.
- Take the solution
- The less a constraint is satisfied, the less weight it gets for the next iteration
- Repeat the above for *T* iterations
- Report the average solution found over all iterations.

• *T* =

<u>CoveringLP($A_{n \times m}, c_m, b_n$)</u> Min $c^T x$ $Ax \geq b$ $x \ge 0$ <u>Oracle($A_{n \times m}, c_m, b_n, p^t$)</u> Min $c^T x$ $(w^t)^T Ax \ge (w^t)^T b$ $x \ge 0$ **MWU Update Rule:** $w_e^{t+1} \coloneqq w_e^t \left(1 - \varepsilon / \phi(A_e x^t - b_e) \right)$ $\forall i: A_e \bar{x} \ge b_e - \varepsilon$

Algorithm:

- Instead of solving for all the constraints, solve for a weighted average constraint.
- Take the solution
- The less a constraint is satisfied, the less weight it gets for the next iteration
- Repeat the above for *T* iterations
- Report the average solution found over all iterations.

• $T = O(\phi \log n / \epsilon^2)$

 $w^{1} \leftarrow (1, \dots, 1) \qquad \rhd \text{ uniform weights}$ For $t = 1, t \leq T$ do $\rhd T$ iterations $x^{t} \leftarrow \text{ solution of Oracle } \rhd \text{ avg constraint w.r.t. } w^{t}$ $w^{t+1} \leftarrow \text{Update}(w^{t}, x^{t})$ $\rhd \text{ decrease weight of constraints oversatisfied by } x^{t}$ $\bar{x} = \operatorname{avg}(x_{1}, \dots x_{T})$

<u>CoveringLP($A_{n \times m}, c_m, b_n$)</u> Min $c^T x$ Ax > b $x \ge 0$ <u>Oracle($A_{n \times m}, c_m, b_n, p^t$)</u> Min $c^T x$ $(w^t)^T Ax \ge (w^t)^T b$ $x \ge 0$ **MWU Update Rule:** $w_e^{t+1} \coloneqq w_e^t \left(1 - \varepsilon / \phi(A_e x^t - b_e) \right)$ $\forall i: A_e \bar{x} \ge b_e - \varepsilon$

Algorithm:

- Instead of solving for all the constraints, solve for a weighted average constraint.
- Take the solution
- The less a constraint is satisfied, the less weight it gets for the next iteration
- Repeat the above for *T* iterations
- Report the average solution found over all iterations.

• $T = O(\phi \log n / \epsilon^2)$

 $w^{1} \leftarrow (1, \dots, 1) \qquad \rhd \text{ uniform weights} \\ For t = 1, t \leq T \text{ do} \qquad \rhd T \text{ iterations} \\ x^{t} \leftarrow \text{ solution of Oracle } \rhd \text{ avg constraint w.r.t. } w^{t} \\ w^{t+1} \leftarrow \text{Update}(w^{t}, x^{t}) \\ \rhd \text{ decrease weight of constraints oversatisfied by } x^{t} \\ \bar{x} = \mathbf{avg}(x_{1}, \dots x_{T}) \qquad \forall i, t: -\phi$

<u>CoveringLP($A_{n \times m}, c_m, b_n$)</u> Min $c^T x$ $Ax \geq b$ $x \ge 0$ $Oracle(A_{n \times m}, c_m, b_n, p^t)$ Min $c^T x$ $(w^t)^T Ax \ge (w^t)^T b$ $x \ge 0$ **MWU Update Rule:** $w_e^{t+1} \coloneqq w_e^t \left(1 - \varepsilon / \phi(A_e x^t - b_e) \right)$ $\forall i: A_{e}\bar{x} \geq b_{e} - \varepsilon$

 $\forall i, t: -\phi \le A_e x^t - b_e \le \phi$

The Plan

• The Multiplicative Weight Update framework

• MWU for the Set Cover

- The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

$$> O(\frac{k \log n}{\epsilon^2}) \text{ passes}$$

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max k-Cover
- Reducing the number of passes to a constant
 Running several rounds of MWU together by sampling in advance

SET-COVER LP(\mathcal{F} , \mathcal{U}):				
Min $\sum_{S \in \mathcal{F}} x_S$				
s.t. $\sum_{S:e\in S} x_S \ge 1$ $x_S \ge 0$	$\forall e \in \mathcal{U} \\ \forall S \in \mathcal{F}$			

<u>Feasibility-SET-COVER LP($\mathcal{F}, \mathcal{U}, k$)</u>				
	$\sum_{S\in\mathcal{F}} x_S \leq k$			
s.t.	$\sum_{S:e\in S} x_S \ge 1$ $x_S \ge 0$	$\forall e \in \mathcal{U} \\ \forall S \in \mathcal{F}$		

Feasibility-SET-COVER LP(
$$\mathcal{F}, \mathcal{U}, k$$
) $\sum_{S \in \mathcal{F}} x_S \leq k$ s.t. $\sum_{S:e \in S} x_S \geq 1$ $\forall e \in \mathcal{U}$ $x_S \geq 0$ $\forall S \in \mathcal{F}$

Assign weight w_e to each element e (initially <u>one</u>)

Solve the *weighted* average constraint approximately!

Feasibility-SET-COVER LP(
$$\mathcal{F}$$
, \mathcal{U} , k)

$$\sum_{S\in\mathcal{F}} x_S \leq k$$

 $\sum_{e \in \mathcal{U}} w_e \sum_{e \in S} x_S \ge \sum_{e \in \mathcal{U}} w_e$ $x_S \ge 0 \qquad \forall S \in \mathcal{F}$

Assign weight w_e to each element e (initially <u>one</u>)

Solve the *weighted* average constraint approximately!

$$\begin{array}{ll} \sum_{e \in \mathcal{U}} w_e \sum_{e \in S} x_S \geq \sum_{e \in \mathcal{U}} w_e \\ \sum_{S \in \mathcal{F}} x_S \sum_{e \in S} w_e \geq \sum_{e \in \mathcal{U}} w_e \\ \sum_{S \in \mathcal{F}} x_S w_S \geq \sum_{e \in \mathcal{U}} w_e \end{array} \quad \text{Define } w_S \coloneqq \sum_{e \in S} w_e \end{array}$$

By *normalizing* weight vector w (prob. vector p): $\sum_{S \in \mathcal{F}} x_S p_S \ge 1$

$$\begin{split} \underline{Oracle}(\mathcal{F}, \mathcal{U}, k, p) \\ \sum_{S \in \mathcal{F}} x_S &\leq k \\ \sum_{S \in \mathcal{F}} x_S p_S &\geq 1 \\ x_S &\geq 0 \qquad \forall S \in \mathcal{F} \end{split}$$

Assign weight w_e to each element e (initially <u>one</u>)

Solve the *weighted* average constraint approximately!

Finally, we can then pick $k(1 + \epsilon)$ sets to cover all the elements!

The Plan

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

$$> O(\frac{k \log n}{\epsilon^2}) \text{ passes}$$

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max k-Cover
- Reducing the number of passes to a constant
 - $\circ\,$ Running several rounds of MWU together by sampling in advance

The Oracle

Given: a probability vector *p* on the elements, and *k*

Goal: pick (fractionally) k sets by assigning values to x_S such that

- 1. The total probability (weight) of the sets in the solution is maximized, i.e., at least (1ε) , where
 - probability of a set is the sum of the probability of its elements, i.e., $p_S = \sum_{e \in S} p_e$
- 2. The width (total number of times any *element is covered*) is *small*.

$$\begin{split} \underline{Oracle}(\mathcal{F}, \mathcal{U}, k, p) \\ \sum_{S \in \mathcal{F}} x_S &\leq k \\ \sum_{S \in \mathcal{F}} x_S p_S &\geq 1 - \varepsilon \\ x_S &\geq 0 \qquad \forall S \in \mathcal{F} \\ -\phi &\leq \sum_{S:e \in S} x_S - 1 \leq \phi \qquad \forall e \in \mathcal{U} \end{split}$$

Initial plan:

- solve the Oracle in one pass and low space,
- gives an algorithm for set cover with *T* passes and low space.

The Plan

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

$$> O(\frac{k \log n}{\epsilon^2}) \text{ passes}$$

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max k-Cover
- Reducing the number of passes to a constant
 - o Running several rounds of MWU together by sampling in advance

Implementing MWU in Stream (I)

- Naïve solution for the oracle:
- Width (the number of times an element is covered) is trivially k
- The number of required rounds to obtain $(1 + \epsilon)$ -approximation is $O(\frac{k \log n}{\epsilon^2})$
- Streaming: find the heaviest set w.r.t p in a single pass over the stream

$$\begin{split} \underline{Oracle}(\mathcal{F}, \mathcal{U}, k, p) \\ & \sum_{S \in \mathcal{F}} x_S \leq k \\ & \sum_{S \in \mathcal{F}} x_S p_S \geq 1 - \varepsilon \\ & x_S \geq 0 \\ & \forall S \in \mathcal{F} \\ -\phi \leq \sum_{S:e \in S} x_S - 1 \leq \phi \quad \forall e \in \mathcal{U} \end{split}$$

 $x_S = \begin{cases} k & \text{If S is the heaviest set,} \\ 0 & \text{Otherwise.} \end{cases}$

Challenge:

Is it possible to find a solution to the oracle with **smaller width**?

No, simply all sets may contain a **designated element** *e* and hence the width of any solution to the oracle is always k no matter how the solution is picked.

The Plan

- The Multiplicative Weight Update framework
 - $\circ~$ MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $(1+\varepsilon)$ -appx

 $O(\frac{k \log n}{\epsilon^2})$ -pass

 $\tilde{O}(n)$ -space

• Reducing the number of passes to logarithmic

- Reducing Width via Extended Set System
- Fractional Max k-Cover
- Reducing the number of passes to a constant

 Running several rounds of MWU together by sampling in advance
The Plan

- The Multiplicative Weight Update framework
 - $\circ~$ MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $(1+\varepsilon)$ -appx

 $O(\frac{k \log n}{s^2})$ -pass

 $\tilde{O}(n)$ -space

- Reducing the number of passes to logarithmic
 - **o** Reducing Width via Extended Set System
 - Fractional Max k-Cover
- Reducing the number of passes to a constant

 Running several rounds of MWU together by sampling in advance

Challenge:

Is it possible to find a solution to the oracle in <u>set system</u> $(\mathcal{U},\mathcal{F})$ with <u>smaller width</u>?

No, simply all sets may contain a **designated element** *e* and hence the width of any solution to the oracle is always k no matter how the solution is picked.

Different Set System?

Extended Set System of \mathcal{F} :

The set system $(\mathcal{U}, \check{\mathcal{F}})$ (*extension* of \mathcal{F}) is the collection containing all subsets of sets in \mathcal{F} .

$$\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{2,6\}\}$$
$$\tilde{\mathcal{F}} = \{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}$$
$$\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{4,5\},\{2,6\}$$
$$\{1,2,3\},\{3,4,5\}$$
$$\}$$

✓ The size of an optimal cover in both set systems are the same.

Different Set System?

Extended Set System of \mathcal{F} :

The set system $(\mathcal{U}, \check{\mathcal{F}})$ (*extension* of \mathcal{F}) is the collection containing all subsets of sets in \mathcal{F} .

```
\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{2,6\}\}\tilde{\mathcal{F}} = \{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{4,5\},\{2,6\}\{1,2,3\},\{3,4,5\}\}
```

✓ The size of an optimal cover in both set systems are the same.

Different Set System?

Extended Set System of \mathcal{F} :

The set system $(\mathcal{U}, \check{\mathcal{F}})$ (*extension* of \mathcal{F}) is the collection containing all subsets of sets in \mathcal{F} .

$$\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{2,6\}\}$$
$$\overset{\check{\mathcal{F}}}{=} \{ \{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}$$
$$\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{4,5\},\{2,6\}$$
$$\{1,2,3\},\{3,4,5\}$$
$$\}$$

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system *Ť*

Different Set System?

$$\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{2,6\}\}$$
$$\overset{\breve{\mathcal{F}}}{=} \{ \{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}$$
$$\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{4,5\},\{2,6\}$$
$$\{1,2,3\},\{3,4,5\}$$
$$\}$$

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system *Ť*

Different Set System?

$$\mathcal{F} = \{\{1, 2, 3\}, \{3, 4, 5\}, \{2, 6\}\}$$
$$\overset{\check{\mathcal{F}}}{=} \{ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}$$
$$\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 5\}, \{2, 6\}$$
$$\{1, 2, 3\}, \{3, 4, 5\}$$
$$\}$$

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system *Ť*

Different Set System?

$$\mathcal{F} = \{\{1,2,3\}, \{3,4,5\}, \{2,6\}\}$$
$$\overset{\check{\mathcal{F}}}{=} \{ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}$$
$$\{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}, \{3,5\}, \{4,5\}, \{2,6\}$$
$$\{1,2,3\}, \{3,4,5\}$$
$$\}$$

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system *Ť*

Different Set System?

$$\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{\mathbf{2},\mathbf{6}\}\}$$
$$\overset{\check{\mathcal{F}}}{=} \{\{1\},\{2\},\{3\},\{4\},\{5\},\{\mathbf{6}\}\}$$
$$\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{\mathbf{4},\mathbf{5}\},\{2,6\}$$
$$\{\mathbf{1},\mathbf{2},\mathbf{3}\},\{3,4,5\}$$
$$\}$$

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system *𝔅*
 - Idea: Pruning the cover

Different Set System?

$$\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{\mathbf{2},\mathbf{6}\}\}$$
$$\overset{\check{\mathcal{F}}}{\mathcal{F}} = \{\{1\},\{2\},\{3\},\{4\},\{5\},\{\mathbf{6}\}\}$$
$$\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{\mathbf{4},\mathbf{5}\},\{2,6\}$$
$$\{\mathbf{1},\mathbf{2},\mathbf{3}\},\{3,4,5\}$$
$$\}$$

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system *𝔅*
 - Idea: Pruning the cover
- Extended Set System has exponentially many sets
 - Work with the <u>original</u> set system,
 - Solve the oracle on ${\mathcal F}$ but and convert it to a solution for $\check{{\mathcal F}}$

Different Set System?

```
\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{\mathbf{2},\mathbf{6}\}\}\overset{\check{\mathcal{F}}}{=} \{\{1\},\{2\},\{3\},\{4\},\{5\},\{\mathbf{6}\}\}\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{\mathbf{4},\mathbf{5}\},\{2,6\}\{\mathbf{1},\mathbf{2},\mathbf{3}\},\{3,4,5\}\}
```

Implementing MWU in Stream (II)

- We want to solve the oracle for $(\mathcal{U}, \check{\mathcal{F}})$
 - Find some solution for the oracle $(\mathcal{U}, \mathcal{F})$, \Longrightarrow e.g., $x_S = \begin{cases} 1 & \text{If S is one of the k heaviest set,} \\ 0 & \text{Otherwise.} \end{cases}$
 - \circ Prune it to get a solution for $(\mathcal{U}, \check{\mathcal{F}})$
 - \checkmark Obtains width = 1

The average constraint may not be satisfied any more!

Instead find a solution that maximizes coverage

Coverage remains unchanged after pruning

- \circ There is a cover of size k,
- \checkmark The solution of maximum k-coverage satisfies the average constraint of the $\sum_{S \in \mathcal{T}} x_S p_S \ge \sum_{e \in \mathcal{I}} p_e = 1$ set cover too; even after the pruning:

 $\underline{\mathbf{Oracle}}(\mathcal{F}, \mathcal{U}, k, p)$

$$\sum_{S\in\mathcal{F}} x_S \leq k$$

$$\begin{array}{ll} \sum_{S \in \mathcal{F}} x_S p_S \geq 1 - \varepsilon \\ x_S \geq 0 & \forall S \in \mathcal{F} \\ -1 \leq \sum_{S:e \in S} x_S - 1 \leq 1 & \forall e \in \mathcal{U} \end{array}$$

Next Goal:

Given a set system (\mathcal{U}, \mathcal{F}), and a parameter k, solve the (weighted) fractional Max k-Cover in one pass

The Plan

- The Multiplicative Weight Update framework
 - $\circ~$ MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $(1+\varepsilon)$ -appx

 $O(\frac{k \log n}{\epsilon^2})$ -pass

 $\tilde{O}(n)$ -space

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max k-Cover
- Reducing the number of passes to a constant

Max k-Cover Problem

Input: a collection \mathcal{F} of sets $S_1, ..., S_m$ Each $S \subseteq \mathcal{U} = \{1, ..., n\}$

Output: k sets of \mathcal{F} such that: Maximizes the total coverage; $|\bigcup_{S \in \mathcal{C}} S|$

Complexity:

- NP-hard
- Greedy: $(1 \frac{1}{e})$ -approximation
- One pass (1ε) -approx. using $\tilde{O}(m/\varepsilon^2)$ space [MV17], [BEM17]

Fractional Max k-Cover

$\underline{Max}-\underline{Cover}-\underline{LP}(\mathcal{F},\mathcal{U},k)$			
Max.	$\sum_{e \in \mathcal{U}} z_e$		
s.t.	$\sum_{S \in \mathcal{F}} x_S \leq k$ $\sum_{S:e \in S} x_S \geq z_e$ $x_S \geq 0$ $z_e \leq 1$	$\forall e \in \mathcal{U}$ $\forall S \in \mathcal{F}$ $\forall e \in \mathcal{U}$	

Weighted Max k-Cover Problem

Input: a collection \mathcal{F} of sets $S_1, ..., S_m$ Each $S \subseteq \mathcal{U} = \{1, ..., n\}$

Output: k sets of \mathcal{F} such that: Maximizes the total coverage; $|\bigcup_{S \in \mathcal{C}} S|$

Complexity:

- NP-hard
- Greedy: $(1 \frac{1}{e})$ -approximation
- One pass (1ε) -approx. using $\tilde{O}(m/\varepsilon^2)$ space [MV17], [BEM17]

Fractional (Weighted) Max k-Cover

$\underline{Max-Cover-LP}(\mathcal{F},\mathcal{U},k,\underline{p})$			
Max.	$\sum_{e \in \mathcal{U}} \frac{p_e}{z_e}$		
s.t.	$\sum_{S \in \mathcal{F}} x_S \leq k$		
	$\sum_{S:e\in S} x_S \ge z_e$	$\forall e \in \mathcal{U}$	
	$x_S \ge 0$	$\forall S \in \mathcal{F}$	
	$z_e \leq 1$	$\forall e \in \mathcal{U}$	

Fractional Max k-Cover in One Pass

- Component I (Element Sampling):
 - 1. Sample $\tilde{O}(\frac{k}{\epsilon^2})$ elements in U' according to **p**.
 - 2. In one pass over the stream: Store \mathcal{F}' , the intersection of all sets in \mathcal{F} with U'
 - 3. Return the best *k*-cover of the sampled elements.
 - w.h.p. the constructed cover is a (1ε) -approximate solution of the main instance.
 - Required space: $\tilde{O}(mk/\varepsilon^2)$

• Component II (Covering Common Elements):

- \circ In the preprocessing step, pick $x^{\text{cmn}} = \left\langle \frac{\varepsilon k}{m}, \dots, \frac{\varepsilon k}{m} \right\rangle$
- o All frequently occurring elements will be covered.
- We can focus on elements with degree $\leq \frac{m}{\varepsilon k}$

• Required space:
$$\tilde{O}\left(\frac{m}{\varepsilon k} \times \frac{k}{\varepsilon^2}\right) = \tilde{O}(m/\varepsilon^3)$$

The pruning

We have:

- Solution \vec{x} on the original set system (U, \mathcal{F})
- The coverage $y_e := \sum_{S \ni e} x_S$ of every element by the solution of the original set system \vec{x} can be computed in one pass.

We need:

- Convert \vec{x} to a solution $\vec{x'}$ on the extended set system (U, \check{F}) so that $\vec{x'}$ can be averaged in the end of the T iterations.
- The coverage $y'_e := \sum_{S \ni e} x_S'$ by the solution $\vec{x'}$ to update the weights of MWU $p_e^{t+1} := p_e^t (1 - O(\varepsilon) \times (y_e' - 1))$

> The Pruning: needs to be done fractionally.

Lemma: There exists a polynomial time algorithm to prune the fractional solution \vec{x} of the maximum coverage on (U, \mathcal{F}) to get a solution $\vec{x'}$ of $(U, \check{\mathcal{F}})$ s.t. the coverage of every element is capped by 1, i.e., $y_e' = \text{Min}(y_e, 1)$.

Implementing MWU in Stream (II)

- Solve fractional Max k Cover in one pass find \vec{x} and in one pass y_e
- Obtain $\overrightarrow{x'}$ and y'_e using the lemma.
- $\vec{x'}$ satisfies the average constraint.
- Update the probabilities according to y'_e
- width is 1
- The number of required rounds of MWU is $O(\frac{\log n}{c^2})$

$$\begin{split} \underline{Oracle}(\mathcal{F}, \mathcal{U}, k, p) \\ & \sum_{S \in \mathcal{F}} x_S \leq k \\ & \sum_{S \in \mathcal{F}} x_S p_S \geq 1 - \varepsilon \\ & x_S \geq 0 \qquad \forall S \in \mathcal{F} \\ -1 \leq \sum_{S:e \in S} x_S - 1 \leq 1 \quad \forall e \in \mathcal{U} \end{split}$$

Challenge:

Can we run several rounds of MWU in one pass of the streaming algorithm?

The Plan

- The Multiplicative Weight Update framework
 - o MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $(1+\varepsilon)$ -appx $O(\frac{k \log n}{\varepsilon^2})$ -pass

- Reducing the number of passes to logarithmic
 - $\circ\,$ Reducing Width via Extended Set System
 - Fractional Max k-Cover

 $(1+\varepsilon)$ -appx $O(\frac{\log n}{\varepsilon^2})$ -pass $\tilde{O}(m/\epsilon^3)$ -space

• Reducing the number of passes to a constant

 $\,\circ\,$ Running several rounds of MWU together by sampling in advance

 $\tilde{O}(n)$ -space

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass

- \times But probability distribution p changes over the iterations
- × Element sampling is done w.r.t. p

Key observation:

The probability vector p changes slowly.

Component I (Element Sampling): Sample $\tilde{O}(\frac{k}{\varepsilon^2})$ elements according to **p**. Return the best *k*-cover of the sampled elements. After ℓ rounds of MWU: $p_e^{t+\ell} \le p_e^t (1+O(\varepsilon))^{\ell}$ Setting $\ell = O(\frac{\log n}{\varepsilon^2 d})$ rounds, p_e increases at most by $n^{O(\frac{1}{\varepsilon d})}$

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass

- \times But probability distribution p changes over the iterations
- × Element sampling is done w.r.t. p

Key observation:

The probability vector p changes slowly.

Component I (Element Sampling):

Sample $\tilde{O}(\frac{kn^{O(1/\varepsilon d)}}{\varepsilon^2})$ elements according to p.

Return the best *k*-cover of the sampled elements.

Rejection Sampling: To adjust the probability p_e

Keep each sample w.p. $p_e^{t+\ell}/p_e^t n^{O(1/\varepsilon d)}$ After ℓ rounds of MWU: $p_e^{t+\ell} \le p_e^t (1+O(\varepsilon))^{\ell}$ Setting $\ell = O(\frac{\log n}{\varepsilon^2 d})$ rounds, p_e increases at most by $n^{O(\frac{1}{\varepsilon d})}$

> To perform $O(\frac{\log n}{\varepsilon^2 d})$ rounds together

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass

- \times But probability distribution p changes over the iterations
- × Element sampling is done w.r.t. p

Key observation:

The probability vector p changes slowly.

Component I (Element Sampling):

Sample $\tilde{O}(\frac{kn^{O(1/\varepsilon d)}}{\varepsilon^2})$ elements according to p. Return the best *k*-cover of the sampled elements. After ℓ rounds of MWU: $p_e^{t+\ell} \le p_e^t (1+O(\varepsilon))^{\ell}$ Setting $\ell = O(\frac{\log n}{\varepsilon^2 d})$ rounds, p_e increases at most by $n^{O(\frac{1}{\varepsilon d})}$

Space increases by $n^{O(1/\varepsilon d)}$ #passes decreases by $O(\frac{\log n}{\varepsilon^2 d})$

Implementing MWU in Stream (II)

- Algorithm will go over *d* passes:
 - Sample $\tilde{O}(\frac{kn^{O(1/\varepsilon d)}}{\varepsilon^2})$ elements for each of the $O\left(\frac{\log n}{\epsilon^2 d}\right)$ rounds assigned to this pass.
 - In one pass find the projection of all sets on these sampled elements in $\tilde{O}(mn^{O(1/d\varepsilon)})$ space. (this uses the common element component).

• For each of the
$$O\left(\frac{\log n}{\epsilon^2 d}\right)$$
 rounds.

- Adjust the samples properly.
- Solve fractional Max k Cover find x_S
- Update the probabilities for all the sampled elements
- $\circ~$ In one pass update the probabilities for all the elements.

$$\begin{split} \underline{Oracle}(\mathcal{F}, \mathcal{U}, k, p) \\ \sum_{S \in \mathcal{F}} x_S &\leq k \\ \\ \sum_{S \in \mathcal{F}} x_S p_S &\geq 1 - \varepsilon \\ x_S &\geq 0 \qquad \forall S \in \mathcal{F} \\ -1 &\leq \sum_{S:e \in S} x_S - 1 \leq 1 \quad \forall e \in \mathcal{U} \end{split}$$

The Plan

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $(1+\varepsilon)$ -appx $O(\frac{k \log n}{s^2})$ -pass

 $\tilde{O}(n)$ -space

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max k-Cover

Running several rounds of MWU together by sampling in advance

 $(1 + \varepsilon)$ -appx

O(p)-pass

 $\tilde{O}(mn^{O(1/d\varepsilon)})$ -space

Summary

- Considered MWU for solving fractional-Set Cover
 - One pass for each of the $O(\frac{\phi \log n}{\epsilon^2})$ iterations.
 - Trivial solution gets $\phi = k$ giving $O(\frac{k \log n}{\epsilon^2})$
 - No way to reduce the width to smaller than k.
- Change the set system to extended set system.
 - Solution remains the same.
 - Goal changes to weighted maximum coverage that is preserved under the pruning.
 - Obtain $\phi = 1$ giving $O(\frac{\log n}{\epsilon^2})$ pass algorithm
- Run several rounds of MWU together
 - The probabilities change slowly over iterations.
 - Sample more elements in advance and adjust the probability.
 - Get constant pass algorithm.

Open Questions

• Open Questions:

- 1. Better bound for general covering/packing LP?
- 2. Any constant pass polylog-approximation algorithm for Weighted Set Cover with o(mn) space ?
- 3. Optimal number of passes for O(log n)-approx. Set Cover?
 - I. Best Upper Bound: O(log n)-pass
 - II. Best Lower Bound: $\Omega(\frac{\log n}{\log \log n})$ -pass [CW16]

Thank You